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The propagationof a wave of a finite amplitude in a medium with a nonlinearity 
of the second degree and negative viscosity, is examined. It is shown that in a 
finite time singularities appear in the solution. The exact solution of the Cauchy 

problem is given for a specific case. Recently the effects of negative viscosity 

which cause an increase in the energy of the wave motion have been studied 

intensively in electrodynamics, plasma physics, the Earth’s atmosphere, in the 

theory of the circulation of the oceans and of flow in open channels [l-4]. Wave 

amplification caused by an energy transfer from turbulent to regular motions, is 
possible in any medium having space-time fluctuations, provided the correlation 
time is sufficiently small [5, 61. As the wave amplitude increases, nonlinear 
effects become important ; they have been taken into account in cases where 

the interaction of a finite number of harmonics p, 41 and the structure of steady 

motions have been examined l-31. 
It is shown in this paper that in a medium with negative viscosity and a second 

degree dynamic nonlinearity, a solution of the Cauchy problem for an arbitrary 
“good” form of the initial perturbation, exists over a finite time interval. An 
example of such a solution is given. 

The equation describing approximately the propagation of a wave having a small but 

finite amplitude in a medium with negative viscosity, has the form 

Here U is a certain physical variable describing the state of the medium (the value au 
has the dimension of velocity), c1 and 6 are constants. Equation (1) can be obtained 
from the Navier-Stokes equation by a recurrence procedure, taking into account a small 

negative viscosity [7]. We note that this equation can be reduced to the Burgers equation 
[S] by the change of variables t --f - t, 2 -+ -5, u -+ - u (1) . Consequently, 

knowing the shock wave, the solution of Eq. (1) can be used to construct the field for 
t < 0 in a medium with ordinary viscosity. 

For (1) we consider the Cauchy problem with the initial condition 

u (2, 0) = u (x) 

where we assume that the function U is sufficiently smooth. In the case of 6 < 0 
(which corresponds to an ordinary viscosity) the character of the process is determined 
by the Reynolds number 181. If Re < 1, the effect of nonlinearity is unessential and 
the wave is rapidly attenuated. For Re > 1 the wave is initially distorted as an ordi- 
nary one, the steepness of the forward slope increases and is limited by dissipation. The 
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structure of the shock front is well described by the stationary solution of the Burgers 
equation. If & > 0 and Re > 2, the wave first distorts as an ordinary one but after- 
wards the negative viscosity becomes essential and, unlike in the case of ordinary visco- 

sity. affects the stability. 

Let us discuss first the structure of the stationary shock waves in such a medium. From 
(1) we easily obtain the stationary solution 

ug = V ih $ + I] , 1 2=x-uvt 

depending on the parameter V. As is evident from (3) such a solution cannot approxi- 

mate the front of an arbitrary perturbation for Re > 1, as it does in the case of positive 

viscosity. It can be shown that the stationary wave (3) is unstable because small pertur- 

bations tend to move from the “discontinuity”. The time characterizing the development 

of instability can be evaluated by linearizing (1) at the stationary solution (3) and repre- 
senting the perturbations in the form 

6u=u-uo=~~,(z)e~m’sch 5 
m 

where $ is an eigenfunction of the Schrodinger equation 

6 ~+[E--*(z)l~=o 

E=h__Eg, u, = CCW UVZ 
- 26 sch2 2s 

(4) 

(5) 

The solution of (5) is well known [9], and as a result we find that the spectrum of Eq. (5) 

consists of two discrete levels h, = 0 and h, = 3a a V2 /I66 and a continuous region 

for h > a2V2 / 46. The perturbation at a 0 = 0 corresponds to a shifting of the sta- 
tionary wave as a whole (cf. l-1 01) and the remaining ones correspond to the deformation 
of the wave contour. Hence, the “life time” of the stationary wave does not exceed 

166 / 3a2V2, which is of the order of the duration of the stationary gradient. Therefore 

the longduration existence of stationary shock waves is impossible in a medium with 
negative viscosity. 

It is convenient to examine the evolution of nonstationary perturbations using the lin- 
ear equation 

(6) 

obtained from (1) by substituting [8] x 
n=2s 66 

a0 azY 
0 = const exp 

s 
0 

(7) 

First of all we note that the Cauchy solution for Eq. (6) is equivalent to the solution of 
the inverse problem of the theory of heat conduction. By virtue of the linearity in (6) 
we represent the solution in the form of the Fourier-Stieltjes integral 

where 8 (k) is the spectrum of the function 0 (x,0). Hence, if for k -+-co the value 
0 (k) esp ( WT) tends to zero sufficiently rapidly for any ‘t, then the function 0(x, t) 
is bounded at any instant. For large t and limited z the integral in (8) can be computed 
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by the method of steepest descent. As a result, we obtain (k, (,t) is the point of the 
descent) 

0 (x, t) - eYct) cos [k, (t) 5 - V (t)l 
(9) 

26k,t == - & In 18 (k,) 1, 7 (t) = 6k,2t + In 10 (ko) 1 

where v is proportional to the argument 0 (kO). From (9) we find the asymptotic ex- 

pression for U 
u(x, l)- 

28ko .- cI t.g (koz - v) (10) 

Hence, the field u (z, t) at the points k,n, = v & n / 2 becomes infinite for a finite 
t. This time (“explosion time”) corresponds to the instant of the first crossing of the 
level 0 = 0 by the function 8 (z, t) which initially, according to (7). wasof constant 
sign and, of course, belonged to the class of functions with a fairly smooth spectrum. If 
for large k the function 6 (1~) _ exp (- 6k2~), then the solution is limited only fDr 
t < -c, a’nd the time of explosion coincides with ‘6. Finally, if 8 (k) descreases more 

slowly than exp (- 6 k2T), then the integral in (8) diverges for an arbitrarily small 
f and the analysis of the solution is impossible by means of (8). 

Thus, the field u (t, Z) becomes infinite in a finite time. This result was obtained 

‘previously for a finite number of interacting sinusoidal waves [Z, 41. We note that in 

the linear theory, a case is possible in which the field remains constant at any instant 

(cf. (9)) ; for this reason the spectrum of the initial perturbations must be restricted (a 

sufficiently rapid decrease in the region of large wave numbers). It is evident that small 
distortions of the wave shape (variations in the high frequency part of the spectrum) can 
result in an unlimited field, due to their amplification at high frequencies. The incor - 

rectness of the inverse problem in the theory of the heat conduction, is related to this 

fact [ll]. In a nonlinear medium an unlimited field appears for an arbitrary “good” 
form of the initial perturbation. Physically this is related to the chain reaction which 
high frequency harmonics generated, due to the nonlinearity, are amplified more strongly 

the higher the frequency.We note that this also proves the incorrectness of the inverse 
problem in the theory of ordinary waves in a medium with a small positive viscosity and 
it was impossible to determine the wave shape in the class of the bounded functions for 
t--t-- CO. 

The character of the development of instability and the explosion time can be exam- 
ined by means of the moments of the field. For example, let u (x) be 

Introducing the 

a;, 

\ U(x)dx=O 
-52 

moments P, (t) and making use of (6), we find for this case 

P, (t) = P, = const, P, (t) = I-‘, (0) - 26 Pot ill) 

P,(t) = 1 x2m [cl (x1 t) - 8 (&- ‘W, O)] CL% 
--oo 

At t = 0 all moments have the same sign, e.g. positive, but in the course of time some 
of them, namely the odd ones, become negative. This means that a region with a nega- 

tive value of field appears in the initially positive impulse. By virtue. of (7). the discon- 
tinuities in the function u (2, t) occur with the change of the sign in the function 8 (2, 
t) . We note that the boundedness of the moments P, near T, indicates the integrable 
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character of the appearing singularities. An estimate of the instant of explosion T, fol- 

lows from (11) 
T, < T, = P, (0) / 26P, 

For example, for a Gaussian impulse the explosion time corresponds to the time of its 
turning into a delta function. The explosion time can be also found for all self-similar 

solutions obtained from the known quantities 1121 by changing 6 + - 6 and t + 
t - f (.t is the explosion time). By means of the moments it is also possible to evalu- 

ate the explosion time for other types of initial condifions for the function U (x) either 
of constant sign or periodic. 

Finally, we give an exact solution of the problem for the function of the form 

u (x) = 
UO sin kx 

I+ l/tRe cos kz 
Re = $< 2) 

the solution of which has the form 

u(5, t> = 
UO exp (6kQ) sin kx 

1 + l/zRe exp (6k‘Jt) cos kx 

We note that in the example considered here, the function (3 is expressed by the sum of 

only two terms and the function u (z, t) is represented at any instant by an infinite 

Fourier series 
8 (z, t) = 1 + 1/2 Ke exp (6 k2t) cos ks 

[ 1 - 1/c-- (Re / 2)z exp (26k2t)ln sin nkx 

The solution remains continuous for t < T, = - (6k2)-l In Re / 2 ; near T, the 
wave spectrum increases rapidly in the region of large wave numbers. 

Thus, a wave of arbitrary amplitude in a medium with a quadratic nonlinearity and a 
negative viscosity, remains bounded only over a finite time interval. We note that Eq. 

(1) is derived for small but finite amplitudes (see [7]), so that in the region of explosion 
it is necessary to take into account factors causing absorption either at high frequencies 

or at high amplitudes. Stabilization of the nonlinear process is possible‘ at some definite 

level. 
The authors thank V. M. Genkin, V. N, Gol’dberg, K. A. Gorshkov and L. A. Ostrovskii 

for useful discussions of the results obtained. 
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Using the concepts developed in [l] we investigate, in the presence of certain 

restrictions, the stability of a weakly inhomogeneous state parametrically per- 
turbed by a small random addition of white noise, We show that when the char- 
acteristic wavelength is arbitrarily small as compared with the distance over 

which it varies substantially, then the mechanism of formation of the eigenfunc- 
rions responsible for the stability of the state is analogous to the mechanism 
given in flf t In the present case it is not the boundaries that act as reflectors, 

as in [I], but the points at which the condition of existence of the global eigen- 

function far the homogeneo~ problem holds, We obtain the criterion of stabi- 
lity of the state in question and discuss the Problem of application of the results 

obtained ta the case in which the ratio of the characteristic wavelength to the 

distance over which it varies substantially~cannot be taken as arbitrarily small. 

1. The statement of the problem is analogous to that given in [l]. We consider the 

following homogeneous problem : 


